ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 [Всего задач: 19]      



Задача 78173

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ ГМТ (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дан квадрат со стороной 1. Найти геометрическое место точек, сумма расстояний от которых до сторон этого квадрата или их продолжений равна 4.
Прислать комментарий     Решение


Задача 115781

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10,11

Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.

Прислать комментарий     Решение

Задача 67212

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Гомотетия помогает решить задачу ]
[ ГМТ (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

На окружности $\omega$ зафиксирована точка $A$. Хорды $BC$ окружности $\omega$ выбираются так, что проходят через фиксированную точку $P$. Докажите, что окружности 9 точек треугольников $ABC$ касаются фиксированной окружности, не зависящей от выбора $BC$.
Прислать комментарий     Решение


Задача 67193

Темы:   [ Изогональное сопряжение ]
[ Описанные четырехугольники ]
[ ГМТ (прочее) ]
Сложность: 5
Классы: 9,10,11

На плоскости даны две окружности $\omega_{1}$ и $\omega_{2}$, касающиеся внешним образом. На окружности $\omega_{1}$ выбран диаметр $AB$, а на окружности $\omega_{2}$ выбран диаметр $CD$. Рассмотрим всевозможные положения точек $A$, $B$, $C$ и $D$, при которых $ABCD$ — выпуклый описанный четырёхугольник, и пусть $I$ — центр его вписанной окружности. Найдите геометрическое место точек $I$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .