Страница:
<< 1 2 3
4 >> [Всего задач: 19]
|
|
Сложность: 4 Классы: 8,9,10,11
|
В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.
|
|
Сложность: 4+ Классы: 9,10
|
Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.
|
|
Сложность: 3 Классы: 10,11
|
Hа плоскости даны две окружности C1 и C2 с центрами
O1 и O2 и радиусами 2R
и R соответственно (O1O2 > 3R).
Hайдите геометрическое место центров тяжести треугольников, у
которых одна вершина лежит на C1, а две другие — на C2.
В стене имеется маленькая дырка (точка). У хозяина есть флажок следующей формы (см. рисунок).
Покажите на рисунке все точки, в которые можно вбить гвоздь, так чтобы флажок закрывал дырку.
|
|
Сложность: 4 Классы: 10,11
|
Дан эллипс $\Gamma$ и его хорда $AB$. Найдите геометрическое место ортоцентров вписанных в $\Gamma$ треугольников $ABC$.
Страница:
<< 1 2 3
4 >> [Всего задач: 19]