ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 330]      



Задача 108614

Темы:   [ Построение треугольников по различным элементам ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по двум данным сторонам, если известно, что медианы, проведённые к этим сторонам, пересекаются под прямым углом.

Прислать комментарий     Решение

Задача 108638

Темы:   [ Вспомогательные равные треугольники ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На сторонах AB и BC треугольника ABC выбраны точки K и L соответственно, причём  ∠KCB = ∠ LAB = α.  Из точки B опущены перпендикуляры BD и BE на прямые AL и CK соответственно. Точка F – середина стороны AC. Найдите углы треугольника DEF.

Прислать комментарий     Решение

Задача 109013

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

На дуге AB есть произвольная точка M. Из середины K отрезка MB опущен перпендикуляр KP на прямую MA.
Доказать, что все прямые PK проходят через одну точку.

Прислать комментарий     Решение

Задача 111554

Темы:   [ Средняя линия трапеции ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Основания трапеции равны 17 и 25. Найдите длину отрезка, соединяющего середины диагоналей.

Прислать комментарий     Решение

Задача 115309

Темы:   [ Вспомогательные равные треугольники ]
[ Средняя линия треугольника ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Точки P и Q – середины оснований AD и BC трапеции ABCD соответственно. Оказалось, что  AB = BC,  а точка P лежит на биссектрисе угла B.
Докажите, что  BD = 2PQ.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .