Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 462]      



Задача 55010

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол C равен 30°, а угол A – острый. Перпендикулярно стороне BC проведена прямая, отсекающая от треугольника ABC треугольник CNM (точка N лежит между вершинами B и C). Площади треугольников CNM и ABC относятся, как  3 : 16.  Отрезок MN равен половине высоты BH треугольника ABC. Найдите отношение  AH : HC.

Прислать комментарий     Решение

Задача 55017

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC и AD параллелограмма ABCD взяты соответственно точки K, M и L таким образом, что AK : KB = 2 : 1, BM : MC = 1 : 1, АL : LD = 1 : 3. Найдите отношение площадей треугольников KBL и BML.

Прислать комментарий     Решение


Задача 55018

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

На сторонах AD и DC параллелограмма ABCD взяты соответственно точки K и M, причём DK : KA = 2 : 1, а DM : MC = 1 : 1. Найдите отношение площади треугольника DKM к площади четырёхугольника BCDK.

Прислать комментарий     Решение


Задача 55021

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC из точки E стороны BC проведена прямая, параллельная высоте BD и пересекающая сторону AC в точке F. Отрезок EF делит треугольник ABC на две равновеликие фигуры. Найдите EF, если  BD = 6,  AD : DC = 2 : 7.

Прислать комментарий     Решение

Задача 55022

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

В трапеции MPQF основания  MF = 24,  PQ = 4.  Высота трапеции равна 5. Точка N делит боковую сторону на отрезки MN и NP, причём  MN = 3NP.
Найдите площадь треугольника NQF.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 462]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .