Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 1224]
|
|
Сложность: 3 Классы: 10,11
|
На бумажке записаны три положительных числа x, y и 1. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
a) число x²? б) число xy?
Фокусник с завязанными глазами выдаёт зрителю пять карточек с номерами от 1 до 5. Зритель прячет две карточки, а три отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?
|
|
Сложность: 3 Классы: 7,8,9
|
Том Сойер взялся покрасить очень длинный забор, соблюдая
условие: любые две доски, между которыми ровно две, ровно три или
ровно пять досок, должны быть окрашены в разные цвета. Какое
наименьшее количество красок потребуется Тому для этой работы?
|
|
Сложность: 3 Классы: 6,7,8
|
На столе в виде треугольника выложены 28 монет
одинакового размера (рис.). Известно, что суммарная
масса любой тройки монет, которые попарно касаются друг
друга, равна
10 г. Найдите суммарную массу всех 18 монет на границе
треугольника.
|
|
Сложность: 3 Классы: 9,10,11
|
Функция f(x) определена для всех x,
кроме 1, и удовлетворяет равенству:
. Найдите f(–1).
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 1224]