ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 217]      



Задача 87471

Темы:   [ Куб ]
[ Свойства сечений ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

Дан куб ABCDA1B1C1D1 с ребром a . Пусть M – такая точка на ребре A1D1 , для которой A1M:MD1 = 1:2 . Найдите периметр треугольника AB1M , а также расстояние от вершины A1 до плоскости, проходящей через вершины этого треугольника.
Прислать комментарий     Решение


Задача 110445

Темы:   [ Куб ]
[ Метод координат в пространстве ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

Ребро куба EFGHE1F1G1H1 равно 2. На рёбрах EH и HH1 взяты точки A и B , причём =2 , = . Через точки A , B и G1 проведена плоскость. Найдите расстояние от точки E до этой плоскости.
Прислать комментарий     Решение


Задача 110446

Темы:   [ Куб ]
[ Метод координат в пространстве ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

На рёбрах NN1 и KN куба KLMNK1L1M1N1 отмечены точки P и Q , причём = , = 4 . Через точки M1 , P и Q проведена плоскость. Найдите расстояние от точки K до этой плоскости, если ребро куба равно 3
Прислать комментарий     Решение


Задача 35153

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ ГМТ - окружность или дуга окружности ]
[ Расстояние между двумя точками. Уравнение сферы ]
Сложность: 3
Классы: 10,11

Концы отрезка фиксированной длины движутся по двум скрещивающимся перпендикулярным прямым. По какой траектории движется середина этого отрезка?
Прислать комментарий     Решение


Задача 66180

Темы:   [ Куб ]
[ Правильные многогранники. Двойственность и взаимосвязи ]
[ Расстояние между двумя точками. Уравнение сферы ]
Сложность: 3+
Классы: 10,11

Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба?

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 217]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .