ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 217]      



Задача 108868

Темы:   [ Метод координат в пространстве ]
[ Расстояние между двумя точками. Уравнение сферы ]
Сложность: 4
Классы: 8,9

Найдите расстояние от точки M0(x0;y0;z0) до плоскости Ax+By+Cz+D=0 .
Прислать комментарий     Решение


Задача 109869

Темы:   [ Упаковки ]
[ Метод координат в пространстве (прочее) ]
[ Куб ]
[ Четность и нечетность ]
[ Обход графов ]
Сложность: 4
Классы: 10,11

N³ единичных кубиков просверлены по диагонали и плотно нанизаны на нить, после чего нить связана в кольцо (то есть вершина первого кубика соединена с вершиной последнего). При каких N такое ожерелье из кубиков можно упаковать в кубическую коробку с ребром длины N?

Прислать комментарий     Решение

Задача 109957

Темы:   [ Инварианты ]
[ Метод координат на плоскости ]
[ Четность и нечетность ]
[ Процессы и операции ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4
Классы: 8,9,10,11

Автор: Храмцов Д.

Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?

Прислать комментарий     Решение

Задача 115943

Темы:   [ Метод координат в пространстве ]
[ Расстояние между двумя точками. Уравнение сферы ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

В тетраэдре ABCD ребро AB перпендикулярно ребру CD , P — произвольная точка пространства. Докажите, что сумма квадратов расстояний от точки O до середин рёбер AC и BD равна сумме квадратов расстояний от точки P до середин рёбер AD и BC .
Прислать комментарий     Решение


Задача 55628

Темы:   [ Свойства симметрии и центра симметрии ]
[ Метод координат на плоскости ]
Сложность: 4+
Классы: 8,9

Существует ли фигура, имеющая ровно две оси симметрии, но не имеющая центра симметрии?

Прислать комментарий     Решение


Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 217]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .