Страница:
<< 9 10 11 12 13 14
15 >> [Всего задач: 71]
|
|
Сложность: 4 Классы: 9,10,11
|
55 боксёров участвовали в турнире по системе "проигравший выбывает". Бои шли последовательно. Известно, что у участников каждого боя число предыдущих побед отличалось не более чем на 1. Какое наибольшее число боёв мог провести победитель турнира?
|
|
Сложность: 4+ Классы: 9,10,11
|
Найдите все бесконечные ограниченные последовательности натуральных чисел
a1, a2, a3, ..., для всех членов которых, начиная с третьего, выполнено
|
|
Сложность: 5- Классы: 8,9,10,11
|
Пусть 2S – суммарный вес некоторого набора гирек.
Назовём натуральное число k средним, если в наборе можно выбрать k гирек, суммарный вес которых равен S. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?
Доказать, что существует бесконечно много таких пар (a, b) натуральных чисел, что a² + 1 делится на b, а b² + 1 делится на a.
|
|
Сложность: 3+ Классы: 7,8,9
|
Имеется 10 отрезков, причём известно, что длина каждого – целое число сантиметров. Два самых коротких отрезка – по сантиметру, самый длинный – 50 см. Докажите, что среди отрезков найдутся три, из которых можно составить треугольник.
Страница:
<< 9 10 11 12 13 14
15 >> [Всего задач: 71]