Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 71]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Монету бросают 10 раз. Найдите вероятность того, что ни разу не выпадут два орла подряд.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
``65 = 64 = 63''.
Тождество Кассини
лежит в основе одного геометрического
парадокса. Он заключается в том, что можно взять шахматную доску,
разрезать ее на четыре части, как показано ниже, а затем
составить из этих же частей прямоугольник:
Как расположить те же четыре части шахматной доски, чтобы
доказать равенство ``64=63''?
|
|
Сложность: 4- Классы: 9,10,11
|
а) Найдите производящую функцию последовательности чисел Люка (определение чисел Люка смотри в задаче 60585)
б) Пользуясь этой функцией, выразите Ln через φ и
(см. задачу 61502).
[Метод Ньютона и числа Фибоначчи]
|
|
Сложность: 4 Классы: 10,11
|
Применим метод Ньютона (см. задачу 61328) для
приближённого нахождения корней многочлена f(x) = x² – x – 1. Какие последовательности чисел получатся, если
а) x0 = 1; б) x0 = 0?
К каким числам будут сходиться эти последовательности?
Опишите разложения чисел xn в цепные дроби.
[Метод Лобачевского и числа Люка]
|
|
Сложность: 4 Классы: 10,11
|
Постройте последовательность полиномов, которая получается, если метод
Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена x² – x – 1. Какие последовательности будут сходиться к корням x1 и x2, если |x1| > |x2|?
Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 71]