ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 157]      



Задача 105104

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства биссектрис, конкуррентность ]
[ Биссектриса угла (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9,10

Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)

Прислать комментарий     Решение

Задача 108633

Темы:   [ Три точки, лежащие на одной прямой ]
[ Ромбы. Признаки и свойства ]
[ Вписанные четырехугольники (прочее) ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В ромбе ABCD на стороне BC нашлась такая точка E, что  AE = CD.  Отрезок ED пересекается с описанной окружностью треугольника AEB в точке F. Докажите, что точки A, F и C лежат на одной прямой.

Прислать комментарий     Решение

Задача 115610

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Точка O – центр окружности, вписанной в треугольник ABC. На сторонах AC и BC выбрали соответственно точки M и K так, что  BK·AB = BO²  и  AM·AB = AO².  Докажите, что точки M, O и K лежат на одной прямой.

Прислать комментарий     Решение

Задача 115683

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Неопределено ]
Сложность: 3+
Классы: 8,9

Прямая, содержащая сторону AC остроугольного треугольника ABC, симметрично отражается относительно прямых AB и BC. Две полученные прямые пересекаются в точке K. Докажите, что прямая BK проходит через центр O описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116561

Темы:   [ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 9,10

В неравнобедренном остроугольном треугольнике ABC точки C0 и B0 – середины сторон AB и AC соответственно, O – центр описанной окружности, H – точка пересечения высот. Прямые BH и OC0 пересекаются в точке P, а прямые CH и OB0 – в точке Q. Оказалось, что четырёхугольник OPHQ – ромб. Докажите, что точки A, P и Q лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .