Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 149]
Две окружности пересекаются в точках A и B. Через точку B
проведена прямая, пересекающая окружности в точках C и D, лежащих
по разные стороны от прямой AB. Касательные к этим окружностям в точках C и D пересекаются в точке E. Найдите AC, если AB = 12, AD = 21, AE = 35.
Две окружности пересекаются в точках A и B. Через точку B
проведена прямая, пересекающая окружности в точках C и D, лежащих
по разные стороны от прямой AB. Касательные к этим окружностям в точках C и D пересекаются в точке E. Найдите AB, если AC = 16, AD = 21, AE = 24.
Две окружности пересекаются в точках A и B. Через точку B
проведена прямая, пересекающая окружности в точках C и D, лежащих
по разные стороны от прямой AB. Касательные к этим окружностям в точках C и D пересекаются в точке E. Найдите AD, если AB = 15, AC = 20, AE = 24.
Через точку A общей хорды BC пересекающихся окружностей проведена прямая, пересекающая окружности в таких точках D и E соответственно, что прямая BD касается одной окружности, а прямая BE – другой. Продолжение хорды CD одной окружности пересекает другую окружность в точке F.
а) Найдите отношение BD : BE, если AD = 8 и AE = 2.
б) Сравните площади треугольников BDE и BDF.
|
|
Сложность: 4- Классы: 9,10,11
|
Окружность Ω1 проходит через центр окружности Ω2. Из точки C, лежащей на Ω1, проведены касательные к Ω2, вторично пересекающие Ω1 в точках A и B. Докажите, что отрезок AB перпендикулярен линии центров окружностей.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 149]