ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Если дан ряд из 15 чисел

a1, a2,..., a15, (1)

то можно написать второй ряд

b1, b2,..., b15, (2)

где bi(i = 1, 2, 3,..., 15) равно числу чисел ряда (1), меньших ai. Существует ли ряд чисел ai, если дан ряд чисел bi:

1, 0, 3, 6, 9, 4, 7, 2, 5, 8, 8, 5, 10, 13, 13?

Вниз   Решение


Существуют ли в пространстве четыре точки A, B, C, D такие, что AB = CD = 8 см, AC = BD = 10 см, AD = BC = 13 см?

ВверхВниз   Решение


Дан лист клетчатой бумаги. Каждый узел сетки обозначается некоторой буквой. Каким наименьшим числом различных букв нужно обозначить эти узлы, чтобы на отрезке (идущем по сторонам клеток - прим.ред.), соединяющем два узла, обозначенных одинаковыми буквами, находился, по крайней мере, один узел, обозначенный одной из других букв?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 149]      



Задача 79381

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10

На хорде AB окружности K с центром в точке O взята точка C. D — вторая точка пересечения окружности K с окружностью, описанной около $ \Delta$ACO. Доказать, что CD = CB.
Прислать комментарий     Решение


Задача 108684

Темы:   [ Пересекающиеся окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках P и Q . Третья окружность с центром в точке P пересекает первую в точках A и B , а вторую – в точках C и D (см.рисунок). Докажите что углы AQD и BQC равны.
Прислать комментарий     Решение


Задача 32129

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Через центр окружности  ω 1 проведена окружность  ω 2; A и B — точки пересечения окружностей. Касательная к окружности  ω 2 в точке B пересекает окружность  ω 1 в точке C. Докажите, что AB = BC.

Прислать комментарий     Решение


Задача 67119

Темы:   [ Пересекающиеся окружности ]
[ Построения (прочее) ]
[ Экстремальные свойства (прочее) ]
[ Инверсия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Окружности $s_1$ и $s_2$ пересекаются в точках $A$ и $B$. Через точку $A$ проводятся всевозможные прямые, вторично пересекающие окружности в точках $P_1$ и $P_2$. Постройте циркулем и линейкой ту прямую, для которой $P_1A\cdot AP_2$ принимает наибольшее значение.
Прислать комментарий     Решение


Задача 53715

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Через одну из точек пересечения двух равных окружностей проведена общая секущая. Докажите, что отрезок этой секущей, заключённый между окружностями, делится пополам окружностью, построенной на общей хорде этих окружностей как на диаметре.

Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .