ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 144]      



Задача 32129

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Через центр окружности  ω 1 проведена окружность  ω 2; A и B — точки пересечения окружностей. Касательная к окружности  ω 2 в точке B пересекает окружность  ω 1 в точке C. Докажите, что AB = BC.

Прислать комментарий     Решение


Задача 53715

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Через одну из точек пересечения двух равных окружностей проведена общая секущая. Докажите, что отрезок этой секущей, заключённый между окружностями, делится пополам окружностью, построенной на общей хорде этих окружностей как на диаметре.

Прислать комментарий     Решение


Задача 55486

Темы:   [ Пересекающиеся окружности ]
[ Отношение площадей подобных треугольников ]
Сложность: 4-
Классы: 8,9

Две окружности радиусов 3 и 4, расстояние между центрами которых равно 5, пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, причём CD = 8 и точка B лежит между точками C и D. Найдите площадь треугольника ACD.

Прислать комментарий     Решение


Задача 110787

Темы:   [ Пересекающиеся окружности ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

Две равные окружности пересекаются в точках A и B . P – отличная от A и B точка одной из окружностей, X , Y – вторые точки пересечения прямых PA , PB с другой окружностью. Докажите, что прямая, проходящая через P и перпендикулярная AB , делит одну из дуг XY пополам.
Прислать комментарий     Решение


Задача 53144

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и B, причём центр O окружности S1 лежит на окружности S2. Хорда AC окружности S1 пересекает окружность S2 в точке D. Докажите, что отрезки OD и BC перпендикулярны.

Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .