ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 769]      



Задача 66232

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Угол между касательной и хордой ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. Две окружности, проходящие через вершину A, касаются стороны BC в точках B и C соответственно. Пусть D – вторая точка пересечения этих окружностей (A лежит ближе к BC, чем D). Известно, что  BC = 2BD.  Докажите, что  ∠DAB = 2∠ADB.

Прислать комментарий     Решение

Задача 102294

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Касательные прямые и касающиеся окружности ]
Сложность: 3+
Классы: 8,9

Окружность, проходящая через вершину A треугольника ABC, касается стороны BC в точке M и пересекает стороны AC и AB соответственно в точках L и K, отличных от вершины A. Найдите отношение AC : AB, если известно, что длина отрезка LC в два раза больше длины отрезка KB, а отношение CM : BM = 3 : 2.
Прислать комментарий     Решение


Задача 102295

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Касательные прямые и касающиеся окружности ]
Сложность: 3+
Классы: 8,9

Окружность, проходящая через вершину P треугольника PQR, касается стороны QR в точке F и пересекает стороны PQ и PR соответственно в точках M и N, отличных от вершины P. Найдите отношение QF : FR, если известно, что длина стороны PQ в полтора раза больше длины стороны PR, а отношение QM : RN = 1 : 6.
Прислать комментарий     Решение


Задача 102387

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Из точки A проведены к окружности две касательные (M и N – точки касания) и секущая, пересекающая эту окружность в точках B и C, а хорду MN – в точке P,  AB : BC = 2 : 3.  Найдите  AP : PC.

Прислать комментарий     Решение

Задача 102388

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Окружность касается сторон угла ABC в точках A и C. Прямая BN пересекает эту окружность в точках M и N, а отрезок AC – в точке K,  BM : MN = 3 : 5.
Найдите  MK : KN.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .