ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 769]      



Задача 53978

Темы:   [ Две касательные, проведенные из одной точки ]
[ Медиана, проведенная к гипотенузе ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Точка D – середина гипотенузы AB прямоугольного треугольника ABC. Окружность, вписанная в треугольник ACD, касается отрезка CD в его середине. Найдите острые углы треугольника ABC.

Прислать комментарий     Решение

Задача 53987

Темы:   [ Две касательные, проведенные из одной точки ]
[ Периметр треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

В равнобедренный треугольник с основанием, равным a, вписана окружность и к ней проведены три касательные так, что они отсекают от данного треугольника три маленьких треугольника, сумма периметров которых равна b. Найдите боковую сторону данного треугольника.

Прислать комментарий     Решение

Задача 53988

Темы:   [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Окружность, вписанная в треугольник ABC, касается его сторон AB, BC и AC соответственно в точках K, M и N. Найдите угол KMN, если  ∠A = 70°.

Прислать комментарий     Решение

Задача 54055

Темы:   [ Признаки и свойства касательной ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

Окружность касается двух параллельных прямых и их секущей. Отрезок секущей, заключённый между параллельными прямыми делится точкой касания в отношении  1 : 3.  Под каким углом секущая пересекает каждую из параллельных прямых?

Прислать комментарий     Решение

Задача 54324

Темы:   [ Две касательные, проведенные из одной точки ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. Окружность радиуса R касается прямых AB и BC в точках A и C и пересекает медиану BD в точке L, причём  BL = 5/9 BD.
Найдите площадь треугольника.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .