Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 603]
В равнобедренном треугольнике ABC с основанием AC проведены
биссектриса CD и прямая DE, перпендикулярная CD (точка E лежит на прямой BC).
Найдите площадь треугольника ABC, если CE = 3,5, CB = 3.
На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников.
В треугольнике ABC сторона AC наименьшая. На сторонах AB
и CB взяты точки K и L соответственно, причём KA = AC = CL. Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC.
Точки K и L лежат на сторонах соответственно AB и AC треугольника ABC, причём KB = LC. Точка X симметрична точке K относительно середины стороны AC, а точка Y симметрична точке L относительно середины стороны AB. Докажите, что прямая, содержащая биссектрису угла A, делит отрезок XY пополам.
В остроугольном треугольнике ABC проведены высоты AA1, BB1 и CC1. На отрезке A1C1 выбрали такие точки A2 и C2, что отрезок B1A2 делится высотой CC1 пополам и пересекает высоту AA1 в точке K, а отрезок B1C2
делится высотой AA1 пополам и пересекает высоту CC1 в точке L. Докажите, что KL || AC.
Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 603]