ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах AB и AC равностороннего треугольника ABC
выбраны точки P и R соответственно так, что AP = CR. Точка M – середина отрезка PR. Натуральное число n называется хорошим, если после приписывания его справа к любому натуральному числу получается число, делящееся на n. Запишите десять хороших чисел, которые меньше чем 1000.
Дана квадратная сетка на плоскости и треугольник с
вершинами в узлах сетки. Докажите, что тангенс любого угла в
треугольнике — число рациональное.
Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.
Две окружности касаются внутренним образом в точке M. Пусть AB — хорда большей окружности, касающаяся меньшей окружности в точке T. Докажите, что MT — биссектриса угла AMB.
а) На параллельных прямых a и b даны точки A и B.
Проведите через данную точку C прямую l, пересекающую прямые a
и b в таких точках A1 и B1, что AA1 = BB1.
Даны треугольник XYZ и выпуклый шестиугольник ABCDEF. Стороны AB, CD и EF параллельны и равны соответственно сторонам XY, YZ и ZX. Докажите, что площадь треугольника с вершинами в серединах сторон BC, DE и FA не меньше площади треугольника XYZ. Доказать, что если a1 ≤ a2 ≤ a3 ≤ ... ≤ a10, то 1/6 (a1 + ... + a6) ≤ 1/10 (a1 + ... + a10). Дана трапеция ABCD, в которой BC = a, AD = b. Параллельно основаниям BC и AD проведена прямая, пересекающая сторону AB в точке P, диагональ AC в точке L, диагональ BD в точке R и сторону CD в точке Q. Известно, что PL = LR. Найдите PQ. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 517]
В треугольнике KLM KM = k, ML = m, точка O – центр описанной окружности. Прямая KN, перпендикулярная прямой MO, пересекает продолжение стороны LM в точке N. Найдите LN.
На стороне острого угла KOM взята точка L между O и K. Окружность проходит через точки K и L и касается луча OM в точке M. На дуге LM, не содержащей точки K, взята точка N. Расстояния от точки N до прямых OM, OK и KM равны m, k и l соответственно. Найдите расстояние от точки N до прямой LM.
Окружность пересекает одну сторону острого угла AOB в точках C и A (C лежит между O и A) и касается другой стороны угла в точке B. На дуге AB, не содержащей точки C, взята точка D. Расстояния от точки D до прямых AC, OB и AB равны a, b и c соответственно. Найдите расстояние от точки D до прямой BC.
На продолжении биссектрисы AL треугольника ABC за точку A
взята такая точка D, что AD = 10 и ∠BDC = ∠BAL = 60°.
Площадь треугольника ABC равна 9. На продолжении его биссектрисы BL за точку B взята такая точка D, что ∠ADC = ∠ABL = 45°.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 517]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке