ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Таня сделала кошелёк из двух клетчатых кусочков ткани $8\times10$, наложив их друг на друга и сшив друг с другом края обеих пар коротких сторон и нижних длинных сторон (см. рисунок, слева сплющенный кошелёк, справа приоткрытый).
Хулиган Вася сделал прямолинейный надрез на переднем слое ткани от одного узла сетки до другого. Но Таня не расстроилась, потому что смогла сложить из надрезанного кошелька кулёк (в сплющенном виде это двуслойный треугольник, не обязательно равнобедренный, нескреплённые стороны совпадают — пример кулька в сплющенном и в приоткытом виде см. на рисунке ниже).
Отметьте на рисунке-кошельке два узла сетки, между которыми мог провести надрез Вася. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]
Известно, что ax4 + bx³ + cx² + dx + e, где a, b, c, d, e – данные целые числа, при любом целом x делится на 7.
Миша решил уравнение x² + ax + b = 0 и сообщил Диме набор из четырёх чисел – два корня и два коэффициента этого уравнения (но не сказал, какие именно из них корни, а какие – коэффициенты). Сможет ли Дима узнать, какое уравнение решал Миша, если все числа набора оказались различными?
Числа a, b, c таковы, что уравнение x³ + ax² + bx + c = 0 имеет три действительных корня. Докажите, что если –2 ≤ a + b + c ≤ 0, то хотя бы один из этих корней принадлежит отрезку [0, 2].
На доске написано несколько приведённых многочленов 37-й степени, все коэффициенты которых неотрицательны. Разрешается выбрать любые два выписанных многочлена f и g и заменить их на такие два приведённых многочлена 37-й степени f1 и g1, что f + g = f1 + g1 или fg = f1g1. Докажите, что после применения любого конечного числа таких операций не может оказаться, что каждый многочлен на доске имеет 37 различных положительных корней.
При делении многочлена x1951 – 1 на x4 + x³ + 2x² + x + 1 получается частное и остаток. Найти в частном коэффициент при x14.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке