|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи К окружности радиуса 7 проведены две касательные из одной точки, удалённой от центра на расстояние, равное 25. На боковых рёбрах SK , SL и SM четырёхугольной пирамиды SKLMN , основание KLMN которой есть квадрат, взяты соответственно точки K1 , L1 и M1 так, что SK1:SK=4:9 , SL1:SL = 1:3 и SM1:SM = 4:11 . Плоскость, проходящая через точки K1 , L1 и M1 пересекает ребро SN в точке N1 . Найдите отношение SN1:SN и отношение объёма пирамиды SK1L1M1N1 к объёму пирамиды SKLMN . |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]
В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что в прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.
Окружность, вписанная в прямоугольный треугольник ABC, касается катетов AC и BC в точках B1 и A1, а гипотенузы – в точке C1. Прямые C1A1 и C1B1 пересекают CA и CB соответственно в точках B0 и A0. Докажите, что AB0 = BA0.
Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что CB + CL = AB.
Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|