Страница:
<< 1 2 3 4 5 6 7 >> [Всего задач: 66]
В треугольнике ABC провели биссектрисы углов A и C.
Точки P и Q – основания перпендикуляров, опущенных из вершины B на эти биссектрисы. Докажите, что отрезок PQ параллелен стороне AC.
На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников.
На биссектрисе острого угла AOC взята точка B. Через точку
B проведена прямая, перпендикулярная к OB и пересекающая сторону
AO в точке K, а сторону OC – в точке L. Через точку B проведена еще одна прямая, пересекающая сторону AO в точке M (M – между O и K), сторону OC — в точке N, причём так, что ∠MON = ∠MNO. Известно, что MK = a, LN = 3a/2. Найдите площадь треугольника MON.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Рассматривается выпуклый четырёхугольник ABCD. Пары его противоположных сторон продолжены до пересечения: AB и CD – в точке P, CB и DA – в точке Q. Пусть lA, lB, lC и lD – биссектрисы внешних углов четырёхугольника при вершинах соответственно A, B, C, D. Пусть lP и lQ – внешние биссектрисы углов соответственно APD и AQB (то есть биссектрисы углов, дополняющих эти углы до развёрнутого). Обозначим через MAC точку пересечения lA и lC, через MBD – lB и lD, через MPQ – lP и lQ. Докажите, что, если все три точки MAC, MBD и MPQ существуют, то они лежат на одной прямой.
В треугольнике
ABC точка
I — центр вписанной
окружности. Точки
M и
N — середины сторон
BC и
AC соответственно. Известно, что угол
AIN
прямой. Докажите, что угол
BIM — также прямой.
Страница:
<< 1 2 3 4 5 6 7 >> [Всего задач: 66]