Страница:
<< 1 2 3 4 5 6 [Всего задач: 29]
Докажите, что прямая делит периметр и площадь треугольника в равных отношениях тогда и только тогда, когда она проходит через центр вписанной окружности треугольника.
На сторонах
BC и
CD параллелограмма
ABCD взяты
точки
M и
N соответственно. Диагональ
BD пересекает
стороны
AM и
AN треугольника
AMN соответственно в
точках
E и
F , разбивая его на две части. Докажите,
что эти две части имеют одинаковые площади тогда и только
тогда, когда точка
K , определяемая условиями
EK || AD ,
FK || AB , лежит на отрезке
MN .
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть точка
A' лежит на одной из сторон трапеции
ABCD , причём
прямая
AA' делит площадь трапеции пополам. Точки
B' ,
C' и
D' определяются аналогично. Докажите, что точка пересечения
диагоналей четырёхугольников
ABCD и
A'B'C'D' симметричны
относительно середины средней линии трапеции
ABCD .
|
|
Сложность: 6 Классы: 9,10,11
|
Фокусник отгадывает площадь выпуклого 2008-угольника
A1A2...
A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.
Страница:
<< 1 2 3 4 5 6 [Всего задач: 29]