ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]
Основанием прямой призмы служит равнобедренная трапеция с острым углом α . Боковая сторона трапеции и её меньшее основание равны. Найдите объём призмы, если диагональ призмы равна a и образует с плоскостью основания угол β .
Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β .
Каждое ребро наклонной треугольной призмы равно 2. Одно из боковых рёбер образует со смежными сторонами основания углы 60o . Найдите объём и площадь полной поверхности призмы.
Докажите, что если около параллелепипеда можно описать сферу, то этот параллелепипед ─ прямоугольный.
Известно, что в некоторую призму можно вписать сферу. Найдите площадь её боковой поверхности, если площадь основания равна S.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке