ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Постройте последовательность полиномов, которая получается, если метод Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена x² – x – 1. Какие последовательности будут сходиться к корням x1 и x2, если |x1| > |x2|? Каждая клетка таблицы размером 7×8 (7 строк и 8 столбцов) покрашена в один из трёх цветов: красный, жёлтый или зелёный. При этом в каждой строке красных клеток не меньше, чем жёлтых, и не меньше, чем зелёных, а в каждом столбце жёлтых клеток не меньше, чем красных, и не меньше, чем зелёных. Сколько зелёных клеток может быть в такой таблице?
В равнобедренном треугольнике ABC ( AB=BC ) высота AF
пересекает высоту BD в точке O , причём Угол бокового ребра с плоскостью основания правильной треугольной пирамиды равен α . Найдите угол боковой грани с плоскостью основания. |
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 290]
В треугольной пирамиде SABC боковое ребро SC равно ребру AB и наклонено к плоскости основания ABC под углом 60o . Известно, что вершины A , B , C и середины боковых рёбер пирамиды расположены на сфере радиуса 1. Докажите, что центр этой сферы лежит на ребре AB , и найдите высоту пирамиды.
Ломаная разбивает круг на две равновеликие части. Докажите, что кратчайшая такая ломаная – это диаметр.
Известно, что a, b и c — длины сторон треугольника. Докажите, что
Пусть AB – наименьшая сторона остроугольного треугольника ABC . На сторонах BC и AC выбраны точки X и Y соответственно. Докажите, что длина ломаной AXYB не меньше удвоенной длины стороны AB .
Середины противоположных рёбер тетраэдра соединены. Доказать, что сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 290]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке