Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 98]
В стране 1988 городов и 4000 дорог.
Докажите, что можно указать кольцевой маршрут, проходящий не более, чем через 20 городов (каждая дорога соединяет два города).
|
|
Сложность: 4+ Классы: 10,11
|
Каждая сторона правильного треугольника разбита на 10 равных отрезков, и
через все точки деления проведены прямые, параллельные сторонам. Данный
треугольник разбился на 100 маленьких треугольников-клеток. Треугольники,
расположенные между двумя соседними параллельными прямыми, образуют полоску.
Какое максимальное число клеток можно отметить, чтобы никакие две отмеченные
клетки не принадлежали одной полоске ни по одному из трёх направлений?
|
|
Сложность: 4+ Классы: 8,9,10
|
Для каждого целого неотрицательного числа i определим число M(i) следующим образом: запишем число i в двоичной форме; если число единиц в этой записи чётно, то M(i) = 0, а если нечётно – то 1 (первые члены этой последовательности: 0, 1, 1, 0, 1, 0, 0, 1, ... ).
а) Рассмотрим конечную последовательность M(0), M(1), ... , M(1000). Докажите, что число членов этой последовательности, равных своему правому соседу, не меньше 320.
б) Рассмотрим конечную последовательность M(0), M(1), ..., M(1000000). Докажите, что число таких членов последовательности, что M(i) = M(i + 7), не меньше 450000.
|
|
Сложность: 4+ Классы: 9,10
|
Натуральное число
b назовём
удачным, если для любого натурального
a, такого, что
a5 делится на
b², число
a² делится на
b.
Найдите количество удачных натуральных чисел, меньших 2010.
|
|
Сложность: 5- Классы: 9,10,11
|
Скажем, что колода из 52 карт сложена правильно, если каждая пара лежащих рядом карт совпадает по масти или достоинству, то же верно для верхней и нижней карты, и наверху лежит туз пик. Докажите, что число способов сложить колоду правильно
а) делится на 12!;
б) делится на 13!.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 98]