ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 488]      



Задача 73795

Темы:   [ Раскраски ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Индукция в геометрии ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Периодичность и непериодичность ]
Сложность: 7-
Классы: 8,9,10

Окружность разбита точками A1, A2,..., An на n равных дуг, каждая из которых окрашена в какой-то цвет. Две дуги окружности (с концами в точках разбиения) называем одинаково окрашенными, если при некотором повороте окружности одна из них полностью, включая цвета всех дуг, совпадает с другой. (Например, на рисунке дуги A2A6 и A6A10 одинаково окрашены.)

Докажите, что если для каждой точки разбиения Ak можно указать две непересекающиеся одинаково окрашенные дуги с общим концом Ak, то всю окружность можно разбить на несколько одинаково окрашенных дуг, то есть окраска периодическая. Рассмотрите сначала случай, когда красок всего две, скажем красная и чёрная.
Прислать комментарий     Решение


Задача 109507

Темы:   [ Выпуклые многоугольники ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Многоугольники (неравенства) ]
[ Метод координат на плоскости ]
[ Интеграл и длина ]
Сложность: 7
Классы: 10,11

Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника: а) через 3 шага с точностью до 0,3; б) через 2007 шагов с точностью до 0,003?
Прислать комментарий     Решение


Задача 32046

Темы:   [ Линейные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3-
Классы: 6,7,8

Дано 25 чисел. Сумма любых четырех из них положительна. Докажите, что сумма их всех тоже положительна.

Прислать комментарий     Решение


Задача 98303

Темы:   [ Десятичная система счисления ]
[ Линейные неравенства и системы неравенств ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 7,8

Девять цифр: 1, 2, 3, ..., 9 выписаны в некотором порядке (так что получилось девятизначное число). Рассмотрим все тройки цифр, идущих подряд, и найдём сумму соответствующих семи трёхзначных чисел. Каково наибольшее возможное значение этой суммы?

Прислать комментарий     Решение

Задача 32116

Темы:   [ Неравенства с углами ]
[ Против большей стороны лежит больший угол ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Классические неравенства (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Пусть a, b, c – длины сторон треугольника; α, β, γ – величины противолежащих углов. Докажите, что    aα + bβ + cγ ≥ aβ + bγ + cα.

Прислать комментарий     Решение


Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .