ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 489]
Докажите, что не существует конечного множества, содержащего более 2N ( N>3 ) попарно неколлинеарных векторов на плоскости, обладающего следующими двумя свойствами.
На плоскости дано k точек, расположенных так, что на каждой прямой, соединяющей две из этих точек, лежит по крайней мере ещё одна из них. Доказать, что все k точек лежат на одной прямой.
На плоскости отмечены все точки с целыми координатами (x,y) такие,
что x2+y2
Докажите, что симметризация по Штейнеру выпуклого многоугольника является
выпуклым многоугольником.
Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон длины не превосходят длин соседних с ними сторон.
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 489]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке