Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 109172

Темы:   [ Замена переменных (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Многочлены (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 9,10

Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

Прислать комментарий     Решение

Задача 116714

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Замена переменных (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

На плоскости нарисовали кривые  y = cos x  и  x = 100 cos(100y)  и отметили все точки их пересечения, координаты которых положительны. Пусть a – сумма абсцисс, а b – сумма ординат этих точек. Найдите  a/b.

Прислать комментарий     Решение

Задача 73712

Темы:   [ Иррациональные уравнения ]
[ Замена переменных (прочее) ]
[ Симметрические системы. Инволютивные преобразования ]
[ Симметрия и инволютивные преобразования ]
[ Методы решения задач с параметром ]
Сложность: 4+
Классы: 10,11

Автор: Темиров Т.

Пусть a – заданное вещественное число, n – натуральное число,  n > 1.
Найдите все такие x, что сумма корней n-й степени из чисел  xn – an  и  2an – xn  равна числу a.

Прислать комментарий     Решение

Задача 108984

Темы:   [ Иррациональные уравнения ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 4+
Классы: 9,10

Найти все действительные решения уравнения

36/+4/=28-4-.

Прислать комментарий     Решение

Задача 30891

Темы:   [ Алгебраические неравенства (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 3+
Классы: 6,7

Докажите, что при любом x выполняется неравенство  x(x + 1)(x + 2)(x + 3) ≥ –1.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .