ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 96]      



Задача 115986

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Линейные неравенства и системы неравенств ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 4
Классы: 9,10,11

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.

  а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

Прислать комментарий     Решение

Задача 109920

Темы:   [ Монотонность и ограниченность ]
[ Доказательство тождеств. Преобразования выражений ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Иррациональные уравнения ]
Сложность: 4+
Классы: 9,10,11

Автор: Сонкин М.

Докажите, что если

++=++= = ++

для некоторых a , b , c , x , y , z , то x=y=z или a=b=c .
Прислать комментарий     Решение

Задача 111723

Темы:   [ Неравенства с площадями ]
[ Формула Герона ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10

Докажите, что для треугольника со сторонами a , b , c и площадью S выполнено неравенство

a2+b2+c2- (|a-b|+|b-c|+|c-a|)2 4 S.

Прислать комментарий     Решение

Задача 58268

Темы:   [ Покрытия ]
[ Системы отрезков, прямых и окружностей ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 5-
Классы: 8,9

Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками. Докажите, что среди них можно выбрать несколько попарно непересекающихся отрезков, сумма длин которых не меньше 0,5.
Прислать комментарий     Решение


Задача 35558

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Оценка + пример ]
Сложность: 3
Классы: 9,10,11

Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M.
Какое наибольшее число элементов может быть в M?

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .