Страница:
<< 96 97 98 99
100 101 102 >> [Всего задач: 1110]
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так,
чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами?
|
|
Сложность: 3+ Классы: 7,8,9
|
Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).
|
|
Сложность: 3+ Классы: 9,10,11
|
В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?
|
|
Сложность: 3+ Классы: 7,8,9
|
В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой из остальных ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее число игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью – одно, за поражение – ноль?
|
|
Сложность: 3+ Классы: 7,8,9
|
В 12 часов дня "Запорожец" и "Москвич" находились на расстоянии 90 км и начали двигаться навстречу друг другу с постоянной скоростью. Через два часа они снова оказались на расстоянии 90 км. Незнайка утверждает, что "Запорожец" до встречи с "Москвичом" и "Москвич" после встречи с "Запорожцем" проехали в сумме 60 км.
Докажите, что он неправ.
Страница:
<< 96 97 98 99
100 101 102 >> [Всего задач: 1110]