ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 488]      



Задача 107782

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Разные задачи на разрезания ]
[ Принцип крайнего (прочее) ]
[ Инварианты ]
Сложность: 4
Классы: 8,9,10

Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.

Прислать комментарий     Решение

Задача 109576

Темы:   [ Процессы и операции ]
[ Средние величины ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В вершинах выпуклого n-угольника расставлены m фишек  (m > n).  За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно n.

Прислать комментарий     Решение

Задача 109792

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Неравенства. Метод интервалов ]
Сложность: 4
Классы: 8,9,10

Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

Прислать комментарий     Решение

Задача 110130

Темы:   [ НОД и НОК. Взаимная простота ]
[ Десятичная система счисления ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Автор: Храмцов Д.

Докажите, что из произвольного множества трёхзначных чисел, включающего не менее четырёх чисел, взаимно простых в совокупности, можно выбрать четыре числа, также взаимно простых в совокупности.

Прислать комментарий     Решение

Задача 110137

Темы:   [ НОД и НОК. Взаимная простота ]
[ Десятичная система счисления ]
[ Принцип крайнего (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Автор: Храмцов Д.

Докажите, что из любых шести четырёхзначных чисел, взаимно простых в совокупности, всегда можно выбрать пять чисел, также взаимно простых в совокупности.

Прислать комментарий     Решение

Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .