ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 210]      



Задача 110151

Темы:   [ Неравенства для углов треугольника ]
[ Тригонометрические неравенства ]
[ Монотонность и ограниченность ]
Сложность: 6+
Классы: 10,11

При каких натуральных n для любых чисел α , β , γ , являющихся величинами углов остроугольного треугольника, справедливо неравенство

sin nα + sin nβ + sin nγ<0?

Прислать комментарий     Решение

Задача 107784

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Многочлен n-й степени имеет не более n корней ]
[ Тригонометрический круг ]
Сложность: 3
Классы: 10,11

Известно число sin α. Какое наибольшее число значений может принимать  а) sin α/2,   б) sin α/3?
Прислать комментарий     Решение


Задача 108026

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тождественные преобразования (тригонометрия) ]
[ Площадь четырехугольника ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 8,9

Из вершины A квадрата ABCD со стороной 1 проведены два луча, пересекающие квадрат так, что вершина C лежит между лучами. Угол между лучами равен β. Из вершин B и D проведены перпендикуляры к лучам. Найдите площадь четырёхугольника с вершинами в основаниях этих перпендикуляров.

Прислать комментарий     Решение

Задача 53823

Темы:   [ Подобные треугольники (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тригонометрические уравнения ]
Сложность: 3+
Классы: 8,9

Равнобедренные треугольники ABC  (AB = BC)  и A1B1C1   (A1B1 = B1C1)  подобны и  AC : A1C1 = 5 : .  Вершины A1 и B1 расположены соответственно на сторонах AC и BC, а вершина C1 – на продолжении стороны AB за точку B, причём  A1B1BC.  Найдите угол B.

Прислать комментарий     Решение

Задача 53824

Темы:   [ Подобные треугольники (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тригонометрические уравнения ]
Сложность: 3+
Классы: 8,9

Равнобедренные треугольники ABC  (AB = BC)  и   A1B1C1  (A1B1 = B1C1)  подобны и  AB : A1B1 = 2 : 1.  Вершины A1, B1 и C1 расположены соответственно на сторонах CA, AB и BC, причём   A1B1AC.  Найдите угол B.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .