Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел.

Вниз   Решение


Малая теорема Ферма. Пусть p – простое число и p не делит a. Тогда  ap–1 ≡ 1 (mod p).
Докажите теорему Ферма, разлагая  (1 + 1 + ... + 1)p  посредством полиномиальной теоремы (см. задачу 60400).

ВверхВниз   Решение


а) У Полины есть волшебная шоколадка в форме клетчатой лесенки со стороной 10 (см. рисунок), в каждой дольке своя начинка. Каждую минуту Полина отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов против часовой стрелки и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке (после этого столбец слипается с другой частью, и снова получается цельная лесенка). Как только каждая долька вернётся на то же место, в котором она была изначально, Полина съест всю шоколадку. Через сколько минут это произойдёт?

Как только каждая долька вернётся на то же место, в котором она была изначально, Саша съест шоколадку. Через сколько минут это произойдёт?

б) У Саши есть такая же волшебная шоколадка. Он каждую минуту отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов по часовой стрелке и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 293]      



Задача 111532

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Около окружности описана трапеция с боковыми сторонами a и b . Найдите сумму квадратов расстояний от центра окружности до вершин трапеции.
Прислать комментарий     Решение


Задача 111535

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

Точка H лежит на большем основании AD равнобедренной трапеции ABCD , причём CH – высота трапеции. Найдите AH и DH , если основания трапеции равны 15 и 35.
Прислать комментарий     Решение


Задача 111536

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

Точка H лежит на большем основании AD равнобедренной трапеции ABCD , причём CH – высота трапеции. Найдите основания трапеции, если AH = 20 и DH= 8 .
Прислать комментарий     Решение


Задача 111539

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Параллелограмм Вариньона ]
Сложность: 3
Классы: 8,9

Диагонали равнобедренной трапеции перпендикулярны и равны 8. Найдите углы и стороны четырёхугольника с вершинами в серединах сторон трапеции.
Прислать комментарий     Решение


Задача 111540

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Параллелограмм Вариньона ]
Сложность: 3
Классы: 8,9

Середины всех сторон трапеции последовательно соединены отрезками. Получился квадрат со стороной 9. Найдите диагонали трапеции и угол между ними.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 293]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .