Страница:
<< 58 59 60 61
62 63 64 >> [Всего задач: 512]
|
|
Сложность: 4- Классы: 10,11
|
В пирамиде ABCD точки M, F и K – середины рёбер BC, AD и CD соответственно. На прямых AM и CF взяты соответственно точки P и Q, причём
PQ || BK. Найдите отношение PQ : BK.
Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.
На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если AB = 12 и BE : EC = 4 : 5. Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.
Трапеция ABCD вписана в окружность. Другая окружность, проходящая через точки A и C, касается прямой CD и пересекает в точке E продолжение основания BC = 7 за точку B. Найдите BE, если AE = 12. Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.
Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а сторону BC – в точке M. Касательная
CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.
Страница:
<< 58 59 60 61
62 63 64 >> [Всего задач: 512]