ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямоугольник составлен из шести квадратов (см. правый рисунок). Найдите сторону самого большого квадрата, если сторона самого маленького равна 1.
Разрежьте изображённую на левом рисунке фигуру на две одинаковые части.
|
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 517]
Два правильных тетраэдра ABCD и MNPQ расположены так, что плоскости BCD и NPQ совпадают, вершина M лежит на высоте AO первого тетраэдра, а плоскость MNP проходит через центр грани ABC и середину ребра BD. Найдите отношение длин рёбер тетраэдров.
В трапеции ABCD с основаниями AD и BC на стороне AB взята такая точка E, что AE : BE = AD : BC. Точка H – проекция точки D на прямую CE.
На сторонах AB и BC треугольника ABC выбраны соответственно точки X и Y так, что ∠AXY = 2∠C, ∠CYX = 2∠A.
Четырехугольник $ABCD$ без равных и без параллельных сторон описан около окружности с центром $I$. Точки $K$, $L$, $M$ и $N$ – середины сторон $AB$, $BC$, $CD$ и $DA$. Известно, что $AB\cdot CD=4IK\cdot IM$. Докажите, что $BC\cdot AD=4IL\cdot IN$.
На плоскости даны прямая l и две точки P и Q, лежащие по одну сторону от неё. Найдите на прямой l такую точку M, для которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 517]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке