ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 173]      



Задача 57838

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Удвоение медианы ]
[ Центральная симметрия помогает решить задачу ]
[ Ромбы. Признаки и свойства ]
Сложность: 2+
Классы: 7,8,9

Докажите, что если в треугольнике медиана и биссектриса совпадают, то треугольник равнобедренный.

Прислать комментарий     Решение

Задача 115276

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Точки A1, B1, C1 – середины сторон соответственно BC, AC, AB треугольника ABC. Известно, что A1A и B1B – биссектрисы углов треугольника A1B1C1. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 108209

Темы:   [ Признаки и свойства параллелограмма ]
[ Три прямые, пересекающиеся в одной точке ]
[ Пересекающиеся окружности ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Пусть ABCD – четырёхугольник с параллельными сторонами AD и BC; M и N – середины его сторон AB и CD соответственно. Прямая MN делит пополам отрезок, соединяющий центры окружностей, описанных около треугольников ABC и ADC. Докажите, что ABCD – параллелограмм.

Прислать комментарий     Решение

Задача 116327

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки подобия ]
[ Ромбы. Признаки и свойства ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 9,10

В ромб ABCD вписана окружность. Прямая, касающаяся этой окружности в точке P, пересекает стороны AB, BC и продолжение стороны AD соответственно в точках N, Q и M, причём  MN : NP : PQ = 7 : 1 : 2.  Найдите углы ромба.

Прислать комментарий     Решение

Задача 111812

Темы:   [ Свойства симметрий и осей симметрии ]
[ Шестиугольники ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Ромбы. Признаки и свойства ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9

Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .