ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 173]      



Задача 108632

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Точки E и F лежат на сторонах соответственно AB и BC ромба ABCD, причём  AE = 5BE,  BF = 5CF.  Известно, что треугольник DEF – равносторонний. Найдите угол BAD.

Прислать комментарий     Решение

Задача 66961

Темы:   [ Вписанные и описанные окружности ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9,10

В выпуклом четырехугольнике $ABCD$ центры описанной и вписанной окружностей треугольника $ABC$ совпадают соответственно с центрами вписанной и описанной окружностей треугольника $ADC$. Известно, что $AB=1$. Найдите длины остальных сторон и углы четырехугольника.
Прислать комментарий     Решение


Задача 52656

Темы:   [ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

В треугольник вписана окружность радиуса 3. Найдите стороны треугольника, если одна из них разделена точкой касания на отрезки, равные 4 и 3.

Прислать комментарий     Решение

Задача 52771

Темы:   [ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
[ Ромбы. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 8,9

Выпуклый четырёхугольник ABCD описан вокруг окружности с центром в точке O, при этом  AO = OC = 1,  BO = OD = 2.
Найдите периметр четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 54173

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Медиана, проведенная к гипотенузе ]
[ Ромбы. Признаки и свойства ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Боковая сторона трапеции равна одному основанию и вдвое меньше другого.
Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .