Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 173]
Продолжения сторон AB и CD вписанного четырёхугольника ABCD
пересекаются в точке P, а продолжения BC и AD — в точке Q.
Докажите, что точки пересечения биссектрис углов AQB и BPC со
сторонами четырёхугольника являются вершинами ромба.
Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.
Пусть P и Q – середины сторон AB и CD четырёхугольника ABCD, M и N – середины диагоналей AC и BD.
Докажите, что если MN и PQ перпендикулярны, то BC = AD.
В треугольник вписан ромб так, что один угол у них общий, а противоположная вершина делит сторону треугольника в отношении 2 : 3. Диагонали ромба равны m и n. Найдите стороны треугольника, содержащие стороны ромба.
На доске нарисованы три четырёхугольника. Петя сказал: "На доске нарисованы по крайней мере две трапеции". Вася сказал: "На доске нарисованы по крайней мере два прямоугольника". Коля сказал: "На доске нарисованы по крайней мере два ромба". Известно, что один из мальчиков сказал неправду, а двое других – правду. Докажите, что среди нарисованных на доске четырёхугольников есть квадрат.
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 173]