Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 496]
Четырёхугольник KLMN – вписанный и описанный одновременно;
A и B – точки касания вписанной окружности со сторонами
KL и MN.
Докажите, что AK·BM = r², где r – радиус вписанной окружности.
|
|
Сложность: 3+ Классы: 8,9,10
|
На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.
Известно, что для вписанного в окружность четырёхугольника ABCD выполнено равенство AB : BC = AD : DC. Прямая, проходящая через вершину B и середину диагонали AC, пересекает окружность в точке M, отличной от B. Докажите, что AM = CD.
Диагонали AC и BD вписанного в окружность четырёхугольника
пересекаются в точке Q под прямым углом. Прямые AB и CD
пересекаются в точке P. Известно, что BC = 5, AD = 10, BQ = 3. Найдите AP.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Через точку внутри вписанного четырёхугольника провели две прямые, делящие его на четыре части. Три из этих частей – вписанные четырёхугольники, причем радиусы описанных вокруг них окружностей равны. Докажите, что четвёртая часть – четырёхугольник, вписанный в окружность того же радиуса.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 496]