Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 192]
|
|
Сложность: 4 Классы: 9,10,11
|
Последовательность
(
an)
задана условиями
a1= 1000000
,
an+1
=n[
]
+n . Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.
|
|
Сложность: 4+ Классы: 9,10
|
Существует ли такая бесконечная возрастающая арифметическая прогрессия
{an} из натуральных чисел, что произведение
an...an+9 делится на сумму
an +... + an+9 при любом натуральном n?
Для n = 1, 2, 3 будем называть числом n-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1, (n + 2), (n + 2)², ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Петя прибавил к натуральному числу N натуральное число M и заметил, что сумма цифр у результата та же, что и у N. Тогда он снова прибавил M к результату, потом – ещё раз, и т. д. Обязательно ли он когда-нибудь снова получит число с той же суммой цифр, что и у N?
|
|
Сложность: 5 Классы: 9,10,11
|
Бесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 192]