|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Продолжения биссектрис углов треугольника ABC пересекают описанную окружность в точках A1, B1 и C1; M — точка пересечения биссектрис. Докажите, что:
a)
Развертка боковой поверхности конуса представляет сектор с углом в 120o; в конус вписана треугольная пирамида, углы основания которой составляют арифметическую прогрессию с разностью 15o. Определить угол наклона к плоскости основания наименьшей из боковых граней. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 45]
Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?
Все биссектрисы треугольника меньше 1. Докажите, что его площадь меньше 1.
Через точку пересечения двух окружностей проведите прямую, на которой окружности высекают хорды, сумма которых наибольшая. (Центры окружностей расположены по разные стороны от их общей хорды).
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 45] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|