Страница:
<< 108 109 110 111
112 113 114 >> [Всего задач: 737]
|
|
Сложность: 3- Классы: 5,6,7
|
12 кузнецов должны подковать 15 лошадей. Каждый кузнец тратит на одну подкову 5 минут. Какое наименьшее время они должны потратить на работу? (Учтите, лошадь не может стоять на двух ногах.)
|
|
Сложность: 3- Классы: 7,8,9
|
В Монголии имеются в обращении монеты в 3 и 5 тугриков. Входной билет в центральный парк стоит 4 тугрика. Как-то раз перед открытием в кассу парка выстроилась очередь из 200 посетителей. У каждого из них, а также у кассира есть ровно 22 тугрика. Докажите, что все посетители смогут купить билет в порядке очереди.
Саша пишет на доске последовательность натуральных чисел. Первое число N > 1 написано заранее. Новые натуральные числа он получает так: вычитает из последнего записанного числа или прибавляет к нему любой его делитель, больший 1. При любом ли натуральном N > 1 Саша сможет написать на доске в какой-то момент число 2011?
|
|
Сложность: 3 Классы: 7,8,9
|
Есть 101 монета, из которых 50 фальшивых, отличающихся по весу на 1 грамм от настоящих. Петя взял одну монету и за одно взвешивание на весах со стрелкой, показывающей разность весов на чашках, хочет определить фальшивая ли она. Сможет ли он это сделать?
Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум
его соседним цифрам по единице, если ни одна из этих цифр не равна 9; либо, вычтя из
соседних двух цифр по единице, если ни одна из них не равна 0.
Можно ли с помощью таких операций из числа 1234 получить число 2002?
Страница:
<< 108 109 110 111
112 113 114 >> [Всего задач: 737]