Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника?

Вниз   Решение


Вавилонский алгоритм вычисления $ \sqrt{2}$. Последовательность чисел {xn} задана условиями:

x1 = 1,        xn + 1 = $\displaystyle {\textstyle\dfrac{1}{2}}$$\displaystyle \left(\vphantom{x_n+\frac{2}{x_n}}\right.$xn + $\displaystyle {\frac{2}{x_n}}$$\displaystyle \left.\vphantom{x_n+\frac{2}{x_n}}\right)$        (n $\displaystyle \geqslant$ 1).

Докажите, что $ \lim\limits_{n\to\infty}^{}$xn = $ \sqrt{2}$.

ВверхВниз   Решение


К чему будет стремиться последовательность из предыдущей задачи 9.46, если в качестве начального условия выбрать x1 = - 1?

ВверхВниз   Решение


Точка M лежит на стороне AB треугольника ABC,  AM = a,  BM = b,  CM = c,  c < a,  c < b.
Найдите наименьший радиус описанной окружности такого треугольника.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 189]      



Задача 86964

Тема:   [ Признаки перпендикулярности ]
Сложность: 3
Классы: 10,11


Диагональ прямоугольного параллелепипеда равна 13, а диагонали боковых граней равны 4$ \sqrt{10}$ и 3$ \sqrt{17}$. Найдите его объем.

Прислать комментарий     Решение


Задача 86965

Тема:   [ Признаки перпендикулярности ]
Сложность: 3
Классы: 10,11


Диагональ прямоугольного параллелепипеда равна a и составляет с одной гранью угол 30o, а с другой 45o. Найдите его объем.

Прислать комментарий     Решение


Задача 78107

Темы:   [ Перпендикулярные прямые в пространстве ]
[ Периодичность и непериодичность ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
[ Пространственные многоугольники ]
Сложность: 3+
Классы: 10,11

В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.

Прислать комментарий     Решение

Задача 79342

Темы:   [ Перпендикулярные прямые в пространстве ]
[ Параллельность прямых и плоскостей ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 3+
Классы: 10,11

В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно?
Прислать комментарий     Решение


Задача 79554

Темы:   [ Признаки перпендикулярности ]
[ Раскраски ]
[ Параллельность прямых и плоскостей ]
Сложность: 3+
Классы: 10,11

В пространстве имеются четыре различные прямые, окрашенные в два цвета: две красные и две синие, причём любая красная прямая перпендикулярна любой синей прямой. Докажите, что либо красные, либо синие прямые параллельны.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 189]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .