|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи С помощью циркуля и линейки постройте на данной окружности точку, которая находилась бы на данном расстоянии от данной прямой.
Сколько осей симметрии может быть у треугольника? На диагоналях D1A , A1B , B1C , C1D граней куба ABCDA1B1C1D1 взяты соответственно точки M , N , P , Q , причём а прямые MN и PQ взаимно перпендикулярны. Найдите μ . Докажите, что сумма внутренних двугранных углов трёхгранного угла больше 180o и меньше 540o . a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби Решите уравнение В треугольной пирамиде SABC все рёбра, кроме SA , равны a , а ребро SA равно высоте треугольника ABC . Через точку A параллельно прямой BC проведена плоскость P , образующая с прямой AB угол, равный arcsin При каких n многочлен (x + 1)n – xn – 1 делится на: а) Из точки A, лежащей вне окружности, выходят лучи AB и AC, пересекающие эту окружность. Докажите, что величина угла BAC равна полуразности угловых величин дуг окружности, заключенных внутри этого угла. б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A. В треугольнике две стороны равны 3,14 и 0,67. Найдите третью сторону, если известно, что её длина является целым числом.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]
Рассматриваются всевозможные треугольники с целочисленными сторонами и периметром 2000, а также всевозможные треугольники с целочисленными сторонами и периметром 2003. Каких треугольников больше?
Полоска 1×10 разбита на единичные квадраты. В квадраты записывают числа 1, 2, ..., 10. Сначала в один какой-нибудь квадрат записывают число 1, затем число 2 записывают в один из соседних квадратов, затем число 3 – в один из соседних с уже занятыми и т. д. (произвольными являются выбор первого квадрата и выбор соседа на каждом шагу). Сколькими способами это можно проделать?
Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)
а) На рисунке слева изображены шесть точек, которые лежат по три на четырёх прямых. Докажите, что можно 24 разными способами отобразить это множество из шести точек на себя так, чтобы каждые три точки, лежащие на одной прямой, отобразились в три точки, лежащие на одной прямой. б) На рисунке справа девять точек лежат по три на девяти прямых, причём через каждую точку проходит по три таких прямых. Эти девять точек и девять прямых образуют знаменитую конфигурацию Паскаля. Сколькими способами можно множество наших девяти точек отобразить на себя так, чтобы каждая тройка точек, лежащая на одной из девяти наших прямых, отобразилась на тройку точек, которая тоже лежит на некоторой прямой из нашей конфигурации? в) Тот же вопрос для конфигурации Дезарга (из десяти точек и десяти прямых), изображённой на нижнем рисунке.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|