Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 207]
На сторонах AB, BC и AC треугольника ABC взяты
соответственно точки D, E и F так, что DE = BE, FE = CE.
Докажите, что центр описанной около треугольника ADF окружности
лежит на биссектрисе угла DEF.
Через точку A , лежащую на окружности с центром O, проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC.
В прямоугольнике диагональ образует со стороной угол в 20
o.
На какие четыре части делится вершинами этого прямоугольника
описанная около него окружность?
Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB.
Найдите угол AMB.
а) Из точки
A, лежащей вне окружности, выходят лучи
AB и
AC,
пересекающие эту окружность. Докажите, что величина угла
BAC равна
полуразности угловых величин дуг окружности, заключенных внутри этого угла.
б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 207]