ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 207]      



Задача 111517

Темы:   [ Площадь круга, сектора и сегмента ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Диаметр окружности радиуса r является основанием правильного треугольника. Найдите ту часть площади треугольника, которая лежит вне круга.
Прислать комментарий     Решение


Задача 115577

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Окружность S1 проходит через центр окружности S2 и пересекает её в точках A и B . Хорда AC окружности S1 касается окружности S2 в точке A и делит первую окружность на дуги, градусные меры которых относятся как 5:7 . Найдите градусные меры дуг, на которые окружность S2 делится окружностью S1 .
Прислать комментарий     Решение


Задача 52425

Темы:   [ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Докажите, что угол между касательной и хордой, проведённой через точку касания, равен половине угловой величины дуги, заключённой между ними.

Прислать комментарий     Решение


Задача 52574

Темы:   [ Диаметр, основные свойства ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Угол при вершине равнобедренного треугольника равен 40o. Одна из боковых сторон служит диаметром полуокружности, которая делится другими сторонами на три части. Найдите эти части.

Прислать комментарий     Решение


Задача 52934

Темы:   [ Площадь круга, сектора и сегмента ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Хорды AB и AC равны между собой. Образованный ими вписанный в окружность угол равен 30o. Найдите отношение площади той части круга, которая заключена в этом угле, к площади всего круга.

Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .