ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 209]      



Задача 52574

Темы:   [ Диаметр, основные свойства ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Угол при вершине равнобедренного треугольника равен 40o. Одна из боковых сторон служит диаметром полуокружности, которая делится другими сторонами на три части. Найдите эти части.

Прислать комментарий     Решение


Задача 52934

Темы:   [ Площадь круга, сектора и сегмента ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Хорды AB и AC равны между собой. Образованный ими вписанный в окружность угол равен 30o. Найдите отношение площади той части круга, которая заключена в этом угле, к площади всего круга.

Прислать комментарий     Решение


Задача 52935

Темы:   [ Площадь круга, сектора и сегмента ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

На основании равностороннего треугольника как на диаметре построена полуокружность, рассекающая треугольник на две части. Сторона треугольника равна a. Найдите площадь той части треугольника, которая лежит вне круга.

Прислать комментарий     Решение


Задача 52570

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 3
Классы: 8,9

Точки A и B соединены двумя дугами окружностей, обращенными выпуклостями в разные стороны: $ \cup$ ACB = 117o23' и $ \cup$ ADB = 42o37'. Середины C и D этих дуг соединены с точкой A. Найдите угол CAD.

Прислать комментарий     Решение


Задача 52379

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Вписанный угол равен половине центрального ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Теорема Пифагора (прямая и обратная) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD вписан в окружность с центром O,  ∠BOA = ∠COD = 60°.  Перпендикуляр BK, опущенный на сторону AD, равен 6;  AD = 3BC.
Найдите площадь треугольника COD.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 209]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .