ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них a человек считают, что будет лучше, b – что будет такой же, и c – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных: m = a + b/2 и n = a – c. Оказалось, что m = 40. Найдите n. Через вершины A, B, C треугольника ABC провели прямые a1,b1,c1 соответственно. Отразим a1, b1, c1 относительно биссектрис соответствующих углов треугольника ABC, получив a2, b2, c2. Пусть A1=b1∩c1, B1=a1∩c1, C1=a1∩b1, аналогично определим A2, B2, C2. Докажите, что у треугольников A1B1C1 и A2B2C2 одинаковое отношение площади к радиусу описанной окружности (т.е. S1R1=S2R2, где Si=S(△AiBiCi), Ri=R(△AiBiCi)). В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с пятого знака после запятой (то есть взято приближение α с недостатком с точностью до 0,0001). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]
Докажите, что площадь правильного восьмиугольника
равна произведению длин наибольшей и наименьшей его диагоналей.
В выпуклом четырёхугольнике ABCD отмечены середины противоположных сторон BC и AD– точки M и N. Диагональ AC проходит через середину отрезка MN. Найдите площадь АВСD, если площадь треугольника АВС равна S.
Никита нарисовал и закрасил выпуклый пятиугольник с периметром 20 и площадью 21. Таня закрасила все точки, находящиеся на расстоянии не более 1 от закрашенных Никитой (см. рис.). На сколько увеличилась закрашенная площадь? Ответ округлите до сотых.
A – вершина правильного звёздчатого пятиугольника. Ломаная AA'BB'CC'DD'EE' является его внешним контуром. Прямые AB и DE продолжены до пересечения в точке F. Докажите, что многоугольник ABB'CC'DED' равновелик четырёхугольнику AD'EF.
У нумизмата Феди все монеты имеют диаметр не больше 10 см. Он хранит их в плоской коробке размером 30×70 см (в один слой). Ему подарили монету диаметром 25 см. Докажите, что все монеты можно уложить в одну плоскую коробку размером 55×55 см.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке