Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Рассматриваются все призмы, в основании которых лежит выпуклый 2015-угольник.
Какое наибольшее количество рёбер такой призмы может пересечь плоскость, не проходящая через её вершины?

Вниз   Решение


Найдите двугранные углы пирамиды ABCD , все ребра которой равны между собой.

ВверхВниз   Решение


Докажите, что если записать в обратном порядке цифры любого натурального числа, то разность исходного и нового числа будет делиться на 9.

ВверхВниз   Решение


По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
равна 1. Найти эти числа.

ВверхВниз   Решение


На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая отрезок AB в точке D. Найдите отношение площадей треугольников ABC и BCD, если известно, что AC = 15, BC = 20 и $ \angle$ABC = $ \angle$ACD.

ВверхВниз   Решение


В данную окружность впишите прямоугольный треугольник, катеты которого проходили бы через две данные точки внутри окружности.

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 401]      



Задача 55454

Тема:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Точка M находится на продолжении хорды AB. Докажите, что если точка C окружности такова, что MC2 = MA . MB, то MC — касательная к окружности.

Прислать комментарий     Решение


Задача 55465

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный.

Прислать комментарий     Решение


Задача 52429

Темы:   [ Диаметр, основные свойства ]
[ Отношения площадей подобных фигур ]
Сложность: 4-
Классы: 8,9

На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая отрезок AB в точке D. Найдите отношение площадей треугольников ABC и BCD, если известно, что AC = 15, BC = 20 и $ \angle$ABC = $ \angle$ACD.

Прислать комментарий     Решение


Задача 52436

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Окружность касается сторон AB и BC треугольника ABC соответственно в точках D и E. Найдите высоту треугольника ABC, опущенную из точки A, если AB = 5, AC = 2, а точки A, D, E, C лежат на одной окружности.

Прислать комментарий     Решение


Задача 52840

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9

В окружность вписан треугольник. Вторая окружность, концентрическая первой, касается одной стороны треугольника и делит каждую из двух других сторон на три равные части. Найдите отношение радиусов этих окружностей.

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .