Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 211]
В треугольнике ABC отрезок MN с концами на сторонах AC и BC параллелен основанию AB и касается вписанной окружности.
∠A = 2α , ∠B = 2β.
Найдите коэффициент подобия треугольников ABC и MNC.
Радиус вписанной в треугольник PQR окружности равен 5, причём
RP = RQ. На прямой PQ взята точка A, удалённая от прямых PR и QR на расстояния 12 и 2 соответственно. Найдите косинус
угла AQR.
Через центр I вписанной окружности ω треугольника ABC проведена прямая, параллельная стороне BC и пересекающая стороны AB и AC соответственно в точках M и N. Периметр треугольника AMN равен 3 , сторона BC равна , а отрезок AI в 3 раза больше радиуса ω. Найдите площадь треугольника ABC.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что окружность, построенная на стороне AB треугольника ABC как на диаметре, касается его вписанной окружности тогда и только тогда, когда сторона AB равна радиусу вневписанной окружности, касающейся этой стороны.
Концы отрезка постоянной длины скользят по сторонам данного угла. Из середины
этого отрезка к нему восставлен перпендикуляр. Докажите, что отрезок
перпендикуляра от его начала до точки пересечения с биссектрисой угла имеет
постоянную длину.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 211]