ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 1235]      



Задача 35663

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3-
Классы: 8,9

В клетках квадратной таблицы 10×10 расставлены числа от 1 до 100. Пусть S1, S2, ..., S10 – суммы чисел, стоящих в столбцах таблицы.
Могло ли оказаться так, что среди чисел S1, S2, ..., S10 каждые два соседних различаются на 1?

Прислать комментарий     Решение

Задача 35791

Темы:   [ Комбинаторика (прочее) ]
[ Процессы и операции ]
[ Задачи с неравенствами. Разбор случаев ]
[ Принцип крайнего ]
Сложность: 3-
Классы: 8,9

У Сережи и у Лены есть несколько шоколадок, каждая весом не более 100 граммов. Как бы они ни поделили эти шоколадки, у одного из них суммарный вес шоколадок не будет превосходить 100 граммов. Какой наибольший суммарный вес могут иметь все шоколадки?

Прислать комментарий     Решение

Задача 66124

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7

Сумма двух сторон прямоугольника равна 7 см, а сумма трёх его сторон равна 9,5 см. Найдите периметр прямоугольника.

Прислать комментарий     Решение

Задача 67498

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Процессы и операции ]
[ Оценка + пример ]
Сложность: 3-
Классы: 7,8,9,10,11

На доску записали числа $1$, $2$, ..., $100$. Далее за ход стирают любые два числа $a$ и $b$, где $a\geqslant b>0$, и пишут вместо них одно число $[a/b]$. После $99$ ходов на доске останется одно число. Каким наибольшим оно может быть? (Напомним, что $[x]$ — это наибольшее целое число, не превосходящее $x$.)
Прислать комментарий     Решение


Задача 77918

Темы:   [ Алгебраические неравенства (прочее) ]
[ Перебор случаев ]
[ Разложение на множители ]
Сложность: 3-
Классы: 8,9

Докажите, что многочлен  x12x9 + x4x + 1  при всех значениях x положителен.

Прислать комментарий     Решение

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 1235]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .