Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В трапеции ABCD даны основания  AD = 12  и  BC = 8.  На продолжении стороны BC выбрана такая точка M, что  CM = 2,4.
В каком отношении прямая AM делит площадь трапеции ABCD?

Вниз   Решение


На прямой расположены три точки A, B и C, причём  AB = BC = 3.  Три окружности радиуса R имеют центры в точках A, B и C.
Найдите радиус четвёртой окружности, касающейся всех трёх данных, если   а)  R = 1;   б)  R = 2;   в)  R = 5.

ВверхВниз   Решение


В окружности радиуса R = 4 проведены хорда AB и диаметр AK, образующий с хордой угол $ {\frac{\pi}{8}}$. В точке B проведена касательная к окружности, пересекающая продолжение диаметра AK в точке C. Найдите медиану AM треугольника ABC.

Вверх   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1010]      



Задача 30820

Тема:   [ Ориентированные графы ]
Сложность: 3
Классы: 7,8

В некоторой стране есть столица и еще 100 городов. Некоторые города (в том числе и столица) соединены дорогами с односторонним движением. Из каждого нестоличного города выходит 20 дорог, и в каждый такой город входит 21 дорога. Докажите, что в столицу нельзя проехать ни из одного города.

Прислать комментарий     Решение

Задача 30822

Темы:   [ Ориентированные графы ]
[ Неопределено ]
Сложность: 3
Классы: 7,8

Докажите, что на рёбрах связного графа можно так расставить стрелки, чтобы из некоторой вершины можно было добраться по стрелкам до любой другой.

Прислать комментарий     Решение

Задача 31072

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8

В некоторой стране из столицы выходит 89 дорог, из города Дальний – одна дорога, из остальных 1988 городов – по 20 дорог.
Доказать, что из столицы можно проехать в Дальний.

Прислать комментарий     Решение

Задача 31078

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3
Классы: 6,7,8

В графе 100 вершин, причём степень каждой из них не меньше 50. Доказать, что граф связен.

Прислать комментарий     Решение

Задача 31087

Темы:   [ Планарные графы. Формула Эйлера ]
[ Многогранники и многоугольники (прочее) ]
[ Шахматная раскраска ]
[ Делимость чисел. Общие свойства ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7,8

Грани некоторого многогранника раскрашены в два цвета так, что соседние грани имеют разные цвета. Известно, что все грани, кроме одной, имеют число рёбер, кратное 3. Доказать, что и эта одна грань имеет кратное 3 число рёбер.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1010]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .